Name

CALCULUS AB

3.3 - Increasing and Decreasing Functions and the First Derivative Test

Definition:

1) A function f is **increasing** on an interval if for any two numbers

 x_1 and x_2 in the interval, $x_1 < x_2$ implies _____.

2) A function f is **decreasing** on an interval if for any two numbers

 x_1 and x_2 in the interval, $x_1 < x_2$ implies _____.

Test for Increasing and Decreasing Functions

1) If f'(x) > 0 for all x in (a, b), then _____.

2) If f'(x) < 0 for all x in (a, b), then _____.

3) If f'(x) = 0 for all x in (a, b), then _____.

<u>First Derivative Test</u>:

Let c be a <u>critical number</u> of a function f that is continuous on an open interval I containing c. If f is differentiable on the interval, except possibly at c, then (c, f(c)) can be classified as follows. 1) If f'(x) changes from ______ at x = c, then (c, f(c)) is a ______ of f. 2) If f'(x) changes from ______ at x = c, then (c, f(c)) is a ______ of f.

 \underline{Ex} . Find the intervals where *f* is increasing and decreasing, identify all points that are relative maximum and minimum points, and justify your answers. Use your results to sketch the graph.

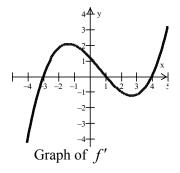
(a) $f(x) = \frac{1}{3}x^3 - x^2 - 3x + 2$

(b)
$$f(x) = (x^2 - 4)^{\frac{2}{3}}$$

(c)
$$f(x) = \frac{x^2}{2x-1}$$

<u>Ex</u>. Use the graph of f' to:

(a) identify the interval(s) on which the graph of f is increasing and decreasing;
(b) estimate the value(s) of x at which the graph of f has a relative maximum or minimum. Justify your answers.



Let g be the function defined by $g(x) = x^4 + 4x^3$. How many relative extrema does g have?

Ex. The function $s(t) = t^2 - 7t + 10$ describes the motion of a particle along a line. (a) Find the velocity function of the particle at any time $t \ge 0$.

(b) Identify the time interval(s) in which the particle is moving in a positive direction. Justify.

(c) Identify the time interval(s) in which the particle is moving in a negative direction. Justify.

(d) Identify the time(s) at which the particle changes direction. Justify.

AP Style Practice

1. The function y = g(x) is differentiable and decreasing for all real numbers. On what intervals is the function $y = g(x^3 - 6x^2)$ increasing?

2. Let f be the function given by f(x) = 3 - 2x. If g is a function with derivative given by g'(x) = f(x)f'(x)(x-3), on what intervals is g increasing?

3. What are all values of x for which the function f defined by $f(x) = (x^2 - 3)e^{-x}$ is increasing?

x	-4	-3	-2	-1	0	1	2	3	4
g'(x)	2	3	0	-3	-2	-1	0	3	2

4. The derivative g' of a function g is continuous and has exactly two zeros. Selected values of g' are given in the table above. If the domain of g is the set of all real numbers, then g is decreasing on what intervals?

CALCULUS AB

Section 3.4 – Concavity and the 2nd Derivative Test

Definition of Concavity : Let f be differentiable on an open interval I .
1) The graph of f is concave upward on an interval I
if f' is on the interval.
2) The graph of f is concave downward on an interval I
if f' is on the interval.

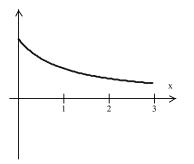
Let f be a function whose second derivative exists on an open interval I.

1) If f''(x) > 0 for all x in I, then the graph of f is _____ in I.

2) If f''(x) < 0 for all x in I, then the graph of f is _____ in I.

Definition of an Inflection Point:									
A function f has an inflection point at $(c, f(c))$									
1) if <u>OR</u> if	AND								
2) if f'' changes sign from	or	_at $x = c$							
OD if $f'(x)$ shows a form									
<u>OR</u> if $f'(x)$ changes from	0r	at x = c.							

<u>Ex</u>. The graph of f is shown below. State the signs of f' and f'' on the interval (0, 3).



<u>Ex</u>. Given the function $f(x) = x^4 - 4x^3$, find:

a) the intervals where f is increasing and decreasing

b) the relative extrema

c) the intervals where f is concave up and concave down

d) the inflection points

Justify your answers, and use the information you found to sketch the graph of f.

 Ex. Sketch the graph of a continuous function f with the given characteristics:

 (a) f(0) = f(2) = 0

 f'(x) > 0 if x < 1

 f'(1) = 0

 f'(x) < 0 if x > 1

 f''(x) < 0

(b) f(0) = f(2) = 0 f'(x) > 0 if x < 1 f'(1) is undefined f'(x) < 0 if x > 1f''(x) > 0

 Second Derivative Test:

 Let f be a function such that the second derivative of f exists on an open interval containing c.

 1) If f'(c) = 0 and f''(c) > 0, then f(c) is a ______ of f.

 2) If f'(c) = 0 and f''(c) < 0, then f(c) is a ______ of f.

Ex. Use the Second Derivative Test, if possible, to find the relative extrema of $f(x) = -3x^5 + 5x^3$. Justify your answer.

Ex. Suppose that the function f has a continuous second derivative for all x, and that f(3) = -4, f'(3) = 1, f''(3) = -2. Let g be a function whose derivative is given by $g'(x) = (x^2 - 9)(2f(x) + 5f'(x))$ for all x. Does g have a local maximum or a local minimum at x = 3? Justify your answer.